
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Games and Economic Behavior 85 (2014) 37–47

Contents lists available at ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Cournot games with biconcave demand

Christian Ewerhart

University of Zurich, Department of Economics, Winterthurerstrasse 30, 8006 Zurich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2010
Available online 23 January 2014

JEL classification:
C72
L13
C62

Keywords:
Cournot games
Existence and uniqueness of a pure-strategy
Nash equilibrium
Generalized concavity
Supermodularity

Biconcavity is a simple condition on inverse demand that corresponds to the ordinary
concept of concavity after simultaneous parameterized transformations of price and
quantity. The notion is employed here in the framework of the homogeneous-good Cournot
model with potentially heterogeneous firms. The analysis leads to unified conditions,
respectively, for the existence of a pure-strategy equilibrium via nonincreasing best-
response selections, for existence via quasiconcavity, and for the uniqueness of the
equilibrium. The usefulness of the generalizations is illustrated in cases where inverse
demand is either “nearly linear” or isoelastic. It is also shown that commonly made
assumptions regarding large outputs are often redundant.
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1. Preliminaries

1.1. Introduction

This paper employs expanded notions of concavity to review the main conditions for existence and uniqueness of a
pure-strategy Nash equilibrium in Cournot’s (1838) homogeneous-good oligopoly with potentially heterogeneous firms.1

Central to the approach is a family of monotone transformations given by ϕα(x) = xα/α if α �= 0 and by ϕα(x) = ln(x) if
α = 0. An inverse demand function P = P (Q ) is then called (α,β)-biconcave if P becomes concave (in the interval where
inverse demand is positive) after transforming the price scale by ϕα and, simultaneously, the quantity scale by ϕβ , where
α,β ∈ R.2

Many of the concavity assumptions used in the literature can be expressed in terms of biconcavity. Concavity of in-
verse demand, as assumed by Szidarovszky and Yakowitz (1977, 1982), corresponds to (1,1)-biconcavity. Selten (1970) and
Murphy et al. (1982), respectively, impose concavity conditions on industry revenues that correspond to strict and non-
strict variants of (1,−1)-biconcavity. Novshek’s (1985) marginal revenue condition corresponds to (1,0)-biconcavity. Amir’s
(1996) log-concavity of inverse demand corresponds to (0,1)-biconcavity. Last but not least, Deneckere and Kovenock (1999)
use a condition on direct demand that corresponds to a strict variant of 1/P being convex, i.e., to (−1,1)-biconcavity.

E-mail address: christian.ewerhart@econ.uzh.ch.
1 Vives (1999) offers an excellent introduction to the Cournot model. Conditions for the existence and uniqueness of a pure-strategy Nash equilibrium in

markets with identical firms have been derived by McManus (1962, 1964), Roberts and Sonnenschein (1976), and Amir and Lambson (2000).
2 Thus, P is (α,β)-biconcave if ϕα ◦ P ◦ ϕ−1

β is concave, where ϕ−1
β is the inverse of ϕβ .

http://dx.doi.org/10.1016/j.geb.2014.01.001
0899-8256/© 2014 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Thus, the notion of biconcavity provides a simple framework for organizing the main conditions in the literature.3

The analysis reviews conditions in three areas. A first topic is equilibrium existence in the tradition of Novshek’s (1985)
landmark fixed-point argument, i.e., via the availability of nonincreasing best-response selections. Novshek assumed that
each firm’s marginal revenue is declining in the aggregate output of its competitors. However, as pointed out by Amir (1996),
log-concavity of inverse demand is likewise a condition that guarantees the availability of nonincreasing best-response se-
lections. While a certain consolidation of these two conditions for existence can be achieved by considering monotone
transformations of the profit functions (Amir, 2005), the present paper will instead follow Amir’s (1996) initial approach,
which considers monotone transformations of the revenue function. This has some advantages. Specifically, as we show,
cross-partial conditions can be replaced by simpler biconcavity conditions, and cost functions may be general (i.e., non-
decreasing and lower semi-continuous), rather than linear. Moreover, exploiting the intuitive interpretation of biconcavity,
assumptions for large outputs turn out to be redundant.

The second topic of the paper is equilibrium existence via quasiconcavity or even concavity of the profit functions, in the
tradition of Friedman (1971) and Okuguchi (1976). In this case, we consider a smooth model with or without capacity con-
straints. Quasiconcavity of profits is established then via a simple second-order condition, where we employ an argument
used by Vives (1999) in a related exercise for logconcave inverse demand.4 While this approach does impose restrictions
on costs, it leads to additional conditions for existence in cases where the availability of monotone best-response selections
cannot be ascertained, i.e., when inverse demand satisfies only relatively weak forms of biconcavity. We also show that
straightforward variants of such conditions ensure that profit functions are either strictly quasiconcave or strongly pseudo-
concave (in the relevant domains). These ancillary results prove useful both for the discussion of examples and for the later
analysis of uniqueness.

The third and final topic is, consequently, the uniqueness of the pure-strategy equilibrium, both in games admitting
nonincreasing best-response selections and in games with quasiconcave profit functions. Intuitively, the assumption of bi-
concavity is employed here to ensure the famous “necessary and sufficient” conditions that result from the index approach
to uniqueness (Kolstad and Mathiesen, 1987). For convenience, however, the formal analysis will be based directly upon
Selten’s (1970) “backward mapping” approach and its subsequent developments by Szidarovszky and Yakowitz (1977) and
Gaudet and Salant (1991).5 Extending arguments of Deneckere and Kovenock (1999), we find a single additional condi-
tion,

(α + β)P ′ − C ′′
i < 0 (i = 1, . . . , N), (1)

that implies, under suitable restrictions on α and β , the uniqueness of the pure-strategy equilibrium in the smooth model
with or without capacity constraints (here Ci denotes, of course, firm i’s cost function). In fact, as will become clear, variants
of condition (1) allow to consolidate a large variety of uniqueness conditions.

Quite obviously, the present analysis draws heavily upon a strand of literature that has emphasized the role of expanded
notions of concavity for economic theory in general, and for the analysis of imperfect competition in particular. Most notably,
Caplin and Nalebuff (1991) defined ρ-concavity via parameterized transformations of the quantity variable, and thereby
introduced the notion of generalized concavity (together with the Prékopa–Borell theorem) to the economics literature. More
closely related to the present analysis is Anderson and Renault (2003), who apply generalized concavity to derive efficiency
and surplus bounds in the Cournot framework. Other related applications include price discrimination (Cowan 2007, 2012;
Aguirre et al., 2010) and hazard-rate conditions (Ewerhart, 2013). In contrast to all those contributions, however, the present
analysis employs simultaneous parameterized transformations of price and quantity.

The rest of the paper is structured as follows. The following two subsections introduce the notion of biconcavity and the
set-up. Section 2 derives conditions for existence via nonincreasing best-response selections. Conditions for quasiconcave
payoffs are stated in Section 3. Section 4 deals with uniqueness. Section 5 concludes. All proofs can be found in Appendix A.

1.2. Biconcavity

This subsection introduces the notion of biconcavity more formally, and derives some of its elementary properties.6

Consider the parameterized family of transformations {ϕα}α∈R defined in the Introduction. Given arbitrary parameters
α,β ∈ R, an (inverse demand) function P = P (Q ) � 0, possibly unbounded at Q = 0, will be called (α,β)-biconcave if
the domain I P = {Q > 0: P (Q ) > 0} is an interval and ϕα(P (Q )) is a concave function of ϕβ(Q ) over the domain where
Q ∈ I P . Clearly, the condition that I P is an interval holds trivially when P is nonincreasing, which will be assumed essen-
tially everywhere in the paper.

3 Given this perspective, it is natural to seek unified conditions. However, having a well-rounded theory is desirable also because the Cournot model
features prominently in some broader classes of games, such as games with strategic complementarities (Milgrom and Roberts, 1990; Vives, 1990), surplus
sharing games (Watts, 1996), and aggregative games with strategic substitutes (Dubey et al., 2006; Jensen, 2010).

4 See Vives (1999, Ch. 4, Note 16). We adapt the proof by allowing for a wider class of biconcavity conditions and by using a different second-order
condition.

5 A useful discussion of this approach can be found in Friedman (1982).
6 The definition given below is based upon an extension briefly mentioned in Avriel (1972).



Author's personal copy

C. Ewerhart / Games and Economic Behavior 85 (2014) 37–47 39

The following useful result extends a well-known ranking property of ρ-concavity (cf. Caplin and Nalebuff, 1991) to the
case of simultaneous parameterized transformations.

Lemma 1.1. Let α′, β ′ ∈ R with α′ � α and β ′ � β . If P is nonincreasing and (α,β)-biconcave, then P is also (α′, β ′)-biconcave.

For example, (1,1)-biconcavity is more stringent than (1,0)-biconcavity, which in turn is more stringent than
(0,0)-biconcavity. The property captured by Lemma 1.1 is intuitive because a lower value of either α or β makes it easier
for the transformed function to be concave. It is essential here, however, that P is nonincreasing. Without this assumption,
the ranking result regarding β would not hold in general.7

The following immediate property of biconcavity translates conditions on direct demand D = D(p) � 0, possibly un-
bounded at p = 0, into conditions on inverse demand (and vice versa), in the spirit of Deneckere and Kovenock (1999).

Lemma 1.2. Let P = P (Q ) and D = D(p) be continuous and nonincreasing, with D(P (Q )) = Q over I P . Then P is (α,β)-biconcave
if and only if D is (β,α)-biconcave.

For example, (0,1)-biconcavity of direct demand corresponds to (1,0)-biconcavity of inverse demand, etc.
Finally, it is often convenient to work with the following second-order characterization of biconcavity.

Lemma 1.3. Assume that P is nonincreasing, and twice differentiable on I P . Then P is (α,β)-biconcave if and only if ΔP
α,β � 0 holds

on I P , where

ΔP
α,β(Q ) = (α − 1)Q P ′(Q )2 + Q P (Q )P ′′(Q ) + (1 − β)P (Q )P ′(Q ). (2)

Intuitively, the criterion captured by Lemma 1.3 puts a bound on a weighted sum of the elasticity, eP = −Q P ′/P , and
the curvature, eP ′ = −Q P ′′/P ′ , of inverse demand. Indeed, if P ′ < 0, then condition (2) is easily seen to be equivalent to
the inequality (α − 1)eP + eP ′ � 1 − β .

The lemma above is straightforward to apply. E.g., linear inverse demand, P (Q ) = max{1 − Q ;0}, is (α,β)-biconcave if
and only if α � 1 and β � 1. For another example, isoelastic inverse demand, defined through P (Q ) = Q −η for η > 0, is
(α,β)-biconcave if and only if αη + β � 0. Further examples will be provided in Section 2.

1.3. Set-up

The following set-up will be used throughout the paper. There is an industry composed of N � 2 firms. Each firm
i = 1, . . . , N produces a quantity qi ∈ Ti of the homogeneous good, where Ti ⊆ R+ denotes the set of output levels that
are technologically feasible for firm i. Aggregate output Q = ∑N

i=1 qi determines inverse demand P (Q ) � 0.8 Firm i’s profit
is Πi(qi, Q −i) = R(qi, Q −i) − Ci(qi), where Q −i = ∑

j �=i q j is the joint output of firm i’s competitors, R = R(qi, Q −i) ≡
qi P (qi + Q −i) is the revenue function, and Ci = Ci(qi) is firm i’s cost function on Ti . Firm i’s best-response correspondence r̂i
is given by

r̂i(Q −i) = {
qi ∈ Ti: Πi(qi, Q −i) � Πi(q̃i, Q −i) for all q̃i ∈ Ti

}
, (3)

where Q −i � 0. Should r̂i(Q −i) be a singleton for a range of Q −i � 0, then the best-response function that maps Q −i to
the unique element of r̂i(Q −i) will be denoted by ri = ri(Q −i). A pure-strategy Nash equilibrium is a vector (q1, . . . ,qN ) ∈
T1 × · · · × T N such that qi ∈ r̂i(Q −i) for i = 1, . . . , N .

2. Existence via nonincreasing best-response selections

2.1. Existence theorem

This section deals with the issue of existence when firms are not necessarily symmetric and profit functions are not
necessarily quasiconcave. As already mentioned in the Introduction, Novshek (1985) observed for this case that, if marginal
revenues are nonincreasing in rivals’ aggregate output, then a firm’s best-response correspondence satisfies a downward
monotonicity property that can be exploited to prove existence. Following this route, the first existence result of the present
paper provides conditions ensuring that a firm’s smallest best response is well-defined and nonincreasing in rivals’ aggregate
output. The monotonicity property is established here using the ordinal variant of supermodularity (Milgrom and Shannon,
1994). More specifically, the proof of the theorem below extends Amir’s (1996) intuitive argument for log-concave inverse

7 Indeed, if inverse demand were to be upward-sloping, e.g., due to general equilibrium effects, then applying a concave transformation to the quantity
scale would make the transformed function more convex rather than more concave.

8 In all what follows, P may be infinite at Q = 0 provided that limQ →0,Q >0 Q P (Q ) = 0.
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demand functions by showing that an entire family of biconcavity conditions implies the crucial dual single-crossing condi-
tion for general cost specifications.

The following theorem is the first main existence result of the present paper.

Theorem 2.1. Assume that P is continuous, nonincreasing, non-constant, and (α,1 − α)-biconcave for some α ∈ [0,1]. Assume also
that Ti is non-empty and closed, and that Ci is lower semi-continuous and nondecreasing, for i = 1, . . . , N. Then, a pure-strategy Nash
equilibrium exists.

2.2. Discussion

Theorem 2.1 embeds the two main conditions for existence via nonincreasing best-response selections. Indeed, the
second-order characterization of (α,1 − α)-biconcavity reduces to Novshek’s (1985) marginal revenue condition

P ′(Q ) + Q P ′′(Q ) � 0 (Q ∈ I P ) (4)

at α = 1, and to Amir’s (1996) log-concavity assumption

P (Q )P ′′(Q ) − P ′(Q )2 � 0 (Q ∈ I P ) (5)

at α = 0. As discussed in the Introduction, the theorem above may be seen as convexifying these two conditions.9

The additional generality achieved by Theorem 2.1 might even be of some applied value, as the following example with
“nearly linear” demand suggests.

Example 2.2. Consider an inverse demand function P given by P (Q ) = (1 − Q δ)1/γ if Q � 1 and by P (Q ) = 0 otherwise,
where γ ≈ 1 and δ ≈ 1. A straightforward calculation shows that

ΔP
α,β(Q ) = δ

γ 2
Q δ−1(1 − Q δ

) 2−2γ
γ

{
(α − γ )δQ δ + (β − δ)γ

(
1 − Q δ

)}
(0 < Q < 1). (6)

Since the expression in the curly brackets is linear in Q δ , it suffices to check the sign of ΔP
α,β(Q ) for Q → 0 and for Q → 1.

It follows that P is (α,β)-biconcave if and only if α � γ and β � δ.

The point of this example is that if γ and δ are marginally smaller than unity, then inverse demand becomes prac-
tically indistinguishable from the linear specification, yet neither (4) nor (5) holds. In contrast, all biconcavity conditions
corresponding to values of α with 1 − δ � α � γ are satisfied.

2.3. Large outputs

Theorem 2.1 releases the commonly made assumption that output levels above some threshold are suboptimal. For
intuition, consider an inverse demand function P that is (α,β)-biconcave for some α,β ∈ R. If P is nonincreasing and
non-constant, the same is true for the transformed function, so the graph with transformed scales has a negative slope
somewhere. Provided α > 0 and β > 0, concavity implies that the market price reaches zero at some finite Q 0 > 0. Hence,
given that costs are nondecreasing, a firm has never a strict incentive to operate at an output level of Q 0 or higher. More
generally, as shown in Appendix A, the game is effectively compact provided that either α > 0 and β � 0 or α = 0 and
β � 1, which strictly includes the cases considered in Theorem 2.1.10

2.4. Other values of α and β

It is immediate that Theorem 2.1 applies more generally when P is (α,β)-biconcave with α � 0, β � 0, and α + β � 1.
However, if any of these three constraints is marginally relaxed, keeping the respective other two, then best-response corre-
spondences need not allow a nonincreasing selection, and an equilibrium may fail to exist. The following example establishes
these facts for the case in which the constraint α + β � 1 is relaxed.

Example 2.3. Consider an inverse demand function P given by P (Q ) = (1 − Q δ)1/γ if Q � 1 and by P (Q ) = 0 otherwise,
where γ > 0, δ > 0, and γ + δ < 1. Suppose initially that costs are zero. Then, because P is (γ , δ)-biconcave and P ′ < 0,
profits are strongly pseudoconcave in the range where qi + Q −i ∈ (0,1).11 The monopoly output in this market is given

9 Obviously, Theorem 2.1 also accounts for the fact that convexity of choice sets is not essential for equilibrium existence via monotone best-response
selections (cf. Dubey et al., 2006).
10 Biconcavity has also implications for small output levels. Specifically, provided that α � 0 and β � 0 with α+β > 0, the biconcavity assumption implies

limQ →0,Q >0 Q P (Q ) = 0.
11 This can be verified using Theorem 3.4 below.
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by Q M ≡ ri(0) = (
γ

γ +δ
)1/δ . Implicit differentiation of the first-order condition at Q −i = 0 shows that r′

i(0) = 1−γ −δ
γ +δ

> 0, so

that ri is indeed locally upward-sloping. Moreover, Q M is a “potentially optimal output” in the sense of Novshek’s (1985,
Theorem 4) necessary conditions for existence, whereas the marginal revenue condition fails to hold at Q M . Therefore, there
exists an integer N � 2 as well as nondecreasing, lower semi-continuous cost functions C1, . . . , CN such that the market with
inverse demand P does not possess a pure-strategy Nash equilibrium.

Similar examples of non-existence may be constructed if one of the other two constraints is relaxed.12 Thus, for general
cost specifications, the parameter restrictions in Theorem 2.1 are indeed just as tight as possible.

3. Existence via quasiconcave profits

3.1. Another existence theorem

This section considers environments in which a firm’s profit function is quasiconcave in own output. The property is of
interest, in particular, because it ensures the existence of a pure-strategy equilibrium when profit functions are continuous
and effective choice sets are non-empty compact intervals. However, since quasiconcavity is neither necessary nor sufficient
for the availability of nonincreasing best-response selections, the analysis leads to conditions for existence that differ from
(but overlap with) the conditions considered in the previous section.

For convenience, the subsequent discussion will focus on the smooth case, as captured by the following assumption.

Assumption 3.1. P is continuous and nonincreasing on R+ , as well as twice continuously differentiable on I P ; for any
i = 1, . . . , N , either Ti = R+ or Ti = [0,ki] with 0 � ki < ∞, and Ci is nondecreasing and twice continuously differentiable
over Ti .13

The next assumption captures the effective compactness of the Cournot game.

Assumption 3.2. There is a finite Q > 0 such that for any i = 1, . . . , N , any Q −i � 0, and any qi > Q , there is some q̃i � Q
such that Πi( q̃i, Q −i) � Πi(qi, Q −i).

Of course, this assumption is required only if at least one firm has unbounded capacity and inverse demand is every-
where positive. Even then, as explained in Section 2, the assumption will often be redundant.

The following result provides biconcavity conditions sufficient for a firm’s profit function to be quasiconcave in own
output. Thereby, a second main existence result is obtained.14

Theorem 3.3. Impose Assumptions 3.1 and 3.2. Let α � 1 and β � 1 be such that (i) ΔP
α,β � 0, and (ii) (α + β)P ′ − C ′′

i � 0 for
any i = 1, . . . , N. Then, Πi(., Q −i) is quasiconcave over Ti for any i = 1, . . . , N and any Q −i � 0. In particular, a purestrategy Nash
equilibrium exists.

This theorem obviously subsumes a variety of known conditions for quasiconcavity and existence.
It will also be noted that the inequalities required in Theorem 3.3 are weak, which is a departure from the strict second-

order conditions commonly employed in the smooth model. Indeed, our proof uses ∂Πi/∂qi > 0 ⇒ ∂2Πi/∂q2
i � 0 as a

condition sufficient for quasiconcavity over an open interval. While intuitive, this condition does not appear to be widely
known, so that a self-contained proof will be given in Appendix A.15

3.2. Strong pseudoconcavity

By strengthening the assumptions of Theorem 3.3 somewhat, one may ensure that profits are strictly quasiconcave over
the interval where the market price is positive, or even strongly pseudoconcave over the interval where both market price
and industry output are positive.16

12 Here is a brief outline of these examples. When the constraint α � 0 is relaxed, one considers a market with P (Q ) = (1 + Q δ)1/γ , where γ < 0,
|γ | small, and δ � 1. Then, with zero costs, r′

i(Q −i) > 0 for large Q −i . Similarly, when the constraint β � 0 is relaxed, one considers an inverse demand
function P given by P (Q ) = (Q δ − 1)1/γ if Q � 1 and by P (Q ) = 0 otherwise, where γ � 1, δ < 0, and |δ| small. Then, with constant marginal costs ci ,
one finds that r′

i(0) > 0 for sufficiently large ci . Note also that, as a consequence of Lemma 1.1, there are no other cases to be considered.
13 In particular, at qi = 0, the first two directional derivatives of Ci exist and are finite, and similarly at qi = ki if Ti is bounded. As before, P may be

unbounded at Q = 0 provided that limQ →0,Q >0 Q P (Q ) = 0.
14 Here and in the sequel, obvious constraints on Q , qi , and Q −i will be omitted. E.g., the use of the derivative of P is meant to indicate a restriction to
Q ∈ I P , etc.
15 To be sure, we remind the reader that the condition ∂Πi/∂qi = 0 ⇒ ∂2Πi/∂q2

i � 0 is not sufficient for quasiconcavity.
16 A twice continuously differentiable function f = f (x) is strongly pseudoconcave over an open interval X if and only if f ′(x) = 0 implies f ′′(x) < 0.

When X has a non-empty boundary, then strong pseudoconcavity requires in addition that, if the directional derivative is zero at a boundary point, then f
decreases quadratically in a neighborhood in the direction of the derivative. See Diewert et al. (1981) for further details.
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Theorem 3.4. Under the assumptions of the previous theorem, suppose that either inequality (i) holds strictly with α + β < 2 or
that inequality (ii) holds strictly for any i = 1, . . . , N. Then, for any Q −i � 0 with P (Q −i) > 0, the function Πi(., Q −i) is strictly
quasiconcave over the interval where P (Q ) > 0, and even strongly pseudoconcave over the interval where Q ∈ I P .

Thus, under the assumptions of Theorem 3.4, the best-response function ri(Q −i) is well-defined in the range where
P (Q −i) > 0. Moreover, the first-order condition holding with equality at some qi ∈ Ti with qi + Q −i ∈ I P is sufficient for a
unique global maximum at qi , and the second-order condition is then satisfied at qi with strict inequality.

4. Uniqueness

4.1. Conditions for uniqueness

This section derives biconcavity conditions sufficient for the existence of a unique pure-strategy Nash equilibrium. The
assumptions of smoothness and effective compactness from the previous section will be kept. Note, however, that smooth-
ness is no longer assumed for convenience only.17 The following additional assumption will be imposed.

Assumption 4.1. For any (q1, . . . ,qN ) ∈ T1 × · · · × T N with P (Q ) = 0, there is some i = 1, . . . , N such that Ci(qi) > Ci(0).

The sole purpose of this assumption is to exclude the possibility of pathological equilibria in which the market price is
zero, yet any individual firm is unable to generate a positive price by reducing its output.

The following result is the main uniqueness theorem of the present paper.

Theorem 4.2. Impose Assumptions 3.1, 3.2, and 4.1. Assume that P is (α,β)-biconcave with 0 � α � 1 and α + β � 1. Assume also
that

(α + β)P ′ − C ′′
i < 0 (i = 1, . . . , N). (7)

Then, there is precisely one pure-strategy Nash equilibrium. Moreover, condition (7) may be replaced by a weak inequality (simultane-
ously for all i = 1, . . . , N) provided that ΔP

α,β < 0 and α + β < 1.

It is important to acknowledge that, under the conditions of the theorem, necessarily P ′ − C ′′
i < 0.18 In particular, in

the range where the market price is positive, best-response functions have a slope strictly exceeding −1, so that multiple
equilibria with inactive firms indeed cannot occur.

4.2. Discussion

The theorem above offers a unifying perspective on numerous sufficient conditions for uniqueness that have been used
in the literature.19

Theorem 4.2 also adds some flexibility to existing conditions, as the following example illustrates.

Example 4.3. Consider a market with isoelastic inverse demand P (Q ) = Q −η , where 0 < η < 1, and assume finite capacities
ki > 0, for i = 1, . . . , N . Note that the condition for small output levels holds, i.e., limQ →0,Q >0 Q P (Q ) = 0. Given that P is
(α,β)-biconcave if and only if αη + β � 0, the tightest condition available from Theorem 4.2 is (1 − η)P ′ − C ′′

i < 0. Thus,
cost functions may be strictly concave within capacity constraints, whereas existing conditions would all require convex
costs.20

5. Conclusion

This paper has used expanded notions of concavity to review conditions for existence and uniqueness of a pure-strategy
Nash equilibrium in the homogeneous-good Cournot model with potentially heterogeneous firms. While a number of poten-
tially useful generalizations and simplifications have been obtained, the most immediate benefit of the approach is probably
its unifying character. In particular, conditions on inverse and direct demand have been integrated in a natural way, which
addresses a concluding request in Deneckere and Kovenock (1999).

Further research is desirable. For example, the theorem of Nishimura and Friedman (1981) has not been reviewed here.
McLennan et al. (2011) manage to subsume that result and Novshek’s (1985) existence theorem in the duopoly case, yet

17 Differentiability of inverse demand is needed, in fact, to avoid multiple equilibria. See Szidarovszky and Yakowitz (1982).
18 This is obvious if condition (7) holds strictly. Otherwise, i.e., if merely (α + β)P ′ − C ′′

i � 0, one notes that ΔP
α,β < 0 implies P ′ < 0 over I P , so that

P ′ − C ′′
i < 0 follows from α + β < 1.

19 Some of those conditions are listed and discussed more thoroughly in the working paper version of this paper.
20 This type of example might prove useful in applications of quantity competition in which the assumption of strategic substitutes would be too restric-

tive, as in Bulow et al. (1985), while increasing returns to scale cannot be ruled out a priori.
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the general relationship still seems to be unexplored. Further, as the discussion in Section 4 has shown, there is a lack of
conditions (on the primitives of the model) that imply uniqueness even if profit functions are not quasiconcave. Last but not
least, further applications of biconcavity appear desirable, both within the framework of the Cournot model and beyond.
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Appendix A. Proofs

Proof of Lemma 1.1. For x, x̂ > 0, λ ∈ [0,1], and ρ ∈ R, write Mρ(x, x̂, λ) = ϕ−1
ρ ((1 − λ)ϕρ(x) + λϕρ(x̂)), where ϕ−1

ρ is

the inverse of ϕρ . Then, by definition, P is (α,β)-biconcave if and only if Mα(P (Q ), P (Q̂ ), λ) � P (Mβ(Q , Q̂ , λ)) for all
Q , Q̂ ∈ I P and all λ ∈ [0,1]. Since Mρ(x, x̂, λ) is nondecreasing in ρ , the condition of (α,β)-biconcavity becomes more
stringent as α increases, and if P is nonincreasing, also as β increases. �
Proof of Lemma 1.2. If P is (α,β)-biconcave, then the function that maps ϕβ(Q ) to ϕα(P (Q )) is concave (in the interval
where Q ∈ I P ). Since P is necessarily strictly declining on I P , also the function that maps ϕα(P (Q )) to ϕβ(Q ) is concave.
Substituting P (Q ) by p, and Q by D(p), shows that D is (β,α)-biconcave. The converse is similar. �
Proof of Lemma 1.3. The function that maps ϕβ(Q ) to ϕα(P (Q )) is concave over the interval where Q ∈ I P if and only if

dϕα(P (Q ))

dϕβ(Q )
= ϕ′

α(P (Q ))P ′(Q )

ϕ′
β(Q )

(8)

is nonincreasing over I P . Differentiating (8) with respect to Q leads to (2). �
Proof of Theorem 2.1. By Lemma A.1 below, w.l.o.g., Ti ⊆ [0, Q ] for i = 1, . . . , N , where Q > 0 is finite. Since Πi(., Q −i) is
u.s.c. for any Q −i � 0, the minimum best response, min r̂i , is well-defined. Take Q̂ −i > Q −i , and suppose q̂i ≡ min r̂i(Q̂ −i) >

min r̂i(Q −i) ≡ qi . Since qi ∈ r̂i(Q −i), it follows that Πi(qi, Q −i) � Πi(q̂i, Q −i). Moreover, P (q̂i + Q̂ −i) > 0 because q̂i > 0 is a
minimum best response. Thus, by Lemma A.2, Πi(qi, Q̂ −i) � Πi(q̂i, Q̂ −i), contradicting qi < q̂i . Thus, min r̂i is nonincreasing.
But r̂i is u.h.c. because Πi(qi, Q −i) is both u.s.c. in qi for any Q −i , and continuous in Q −i for any qi ∈ Ti . Existence follows
now from Kukushkin (1994). �

The lemma below is used to verify the effective compactness of the Cournot game.

Lemma A.1. Assume that P is nonincreasing, non-constant, and (α,β)-biconcave for either α > 0 and β � 0, or for α = 0 and β � 1.
Then there is a finite Q > 0 such that R(., Q −i) is nonincreasing in the interval [Q ;∞) for any Q −i � 0.

Proof. The case where α > 0 and β > 0 has been dealt with in Section 2. The case where α > 0 and β = 0 is similar.
Consider now α = 0. One may clearly assume w.l.o.g. that P > 0. Then, at any Q � 0,

d ln R(qi, Q −i)

dϕβ(qi)
= d ln P (Q )

dϕβ(Q )

∂ϕβ(Q )

∂ϕβ(qi)
+ ∂ ln qi

∂ϕβ(qi)
. (9)

Since P is nonincreasing and non-constant, d ln P (Q )
dϕβ(Q )

|Q =Q # ≡ s < 0 for some Q # � 0. But P is (0, β)-biconcave, hence
d ln P (Q )
dϕβ(Q )

� s at any Q � Q #. Note also that ∂ϕβ(Q )

∂ϕβ (qi)
= (1 + Q −i

qi
)β−1 � 1, and that ∂ ln qi

∂ϕβ(qi)
= q−β

i < |s| for all sufficiently

large qi . Thus, (9) is negative at any sufficiently large qi , regardless of Q −i . �
The following lemma establishes the dual single-crossing property of Cournot profits.

Lemma A.2. Let P be nonincreasing and (α,1 −α)-biconcave for some α ∈ [0,1]. Assume also that Ci is nondecreasing. Then, for any
q̂i > qi and Q̂ −i > Q −i such that P (q̂i + Q̂ −i) > 0 and Πi(qi, Q −i) � Πi(q̂i, Q −i), it follows that Πi(qi, Q̂ −i) � Πi(q̂i, Q̂ −i).

Proof. Suppose Πi(qi, Q̂ −i) < Πi(q̂i, Q̂ −i). Then, R(qi, Q̂ −i) < R(q̂i, Q̂ −i), and the interval Ĵ = [ϕα(R(qi, Q̂ −i)),

ϕα(R(q̂i, Q̂ −i))] is non-degenerate. By Lemma A.3 below, J = [ϕα(R(qi, Q −i)),ϕα(R(q̂i, Q −i))] is at least as wide as Ĵ . More-
over, the left endpoint of J weakly exceeds the left endpoint of Ĵ , as in Fig. 1. Applying the convex inverse ϕ−1

α to J and Ĵ



Author's personal copy

44 C. Ewerhart / Games and Economic Behavior 85 (2014) 37–47

Fig. 1. Extending Amir’s (1996) key argument.

yields R(q̂i, Q −i) − R(qi, Q −i) � R(q̂i, Q̂ −i) − R(qi, Q̂ −i). Hence, Πi(q̂i, Q −i) − Πi(qi, Q −i) � Πi(q̂i, Q̂ −i) − Πi(qi, Q̂ −i) > 0,
a contradiction. �

The next lemma extends an argument in Novshek (1985) and enters the proof above.

Lemma A.3. Let P be nonincreasing and (α,1 − α)-biconcave for some α � 0. Then for any q̂i > qi and Q̂ −i > Q −i such that
P (q̂i + Q̂ −i) > 0,

ϕα

(
R(q̂i, Q −i)

) − ϕα

(
R(qi, Q −i)

)
� ϕα

(
R(q̂i, Q̂ −i)

) − ϕα

(
R(qi, Q̂ −i)

)
. (10)

Proof. By Lemma A.4 below, P (qi + Q̃ −i) is (α,1 − α)-biconcave in qi , for any Q̃ −i ∈ [Q −i, Q̂ −i]. Therefore, for almost any
Q̃ −i ∈ [Q −i, Q̂ −i], the inequality

∂ϕα(P (qi + Q̃ −i))

∂ϕ1−α(qi)
� ∂ϕα(P (q̂i + Q̃ −i))

∂ϕ1−α(q̂i)
(11)

is well-defined and holds. Using (8) and the functional form of ϕα ,

∂ϕα(P (qi + Q̃ −i))

∂ϕ1−α(qi)
= ϕ′

α(P (qi + Q̃ −i))P ′(qi + Q̃ −i)

ϕ′
1−α(qi)

= ∂ϕα(R(qi, Q̃ −i))

∂ Q̃ −i
. (12)

Integrating over the interval [Q −i, Q̂ −i] yields

ϕα

(
R(qi, Q̂ −i)

) − ϕα

(
R(qi, Q −i)

) =
Q̂ −i∫

Q −i

∂ϕα(R(qi, Q̃ −i))

∂ Q̃ −i
dQ̃ −i . (13)

Since (12) and (13) hold likewise with qi replaced by q̂i , inequality (10) follows. �
The next lemma, used in the proof above, generalizes a result in Murphy et al. (1982).

Lemma A.4. Assume that P is (α,1 − α)-biconcave and nonincreasing, for α � 0. Then P (qi + Q −i) is (α,1 − α)-biconcave in qi ,
for any Q −i � 0.

Proof. Suppose ϕα(P (Q )) is concave and nonincreasing in ϕ1−α(Q ) over the domain where Q ∈ I P . Using Lemma 1.3,
ϕ1−α(Q ) ≡ ϕ1−α(qi + Q −i) is easily seen to be convex in ϕ1−α(qi) if Q −i � 0. Hence, ϕα(P (qi + Q −i)) is concave in
ϕ1−α(qi) over the domain where Q ∈ I P . �
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Proof of Theorem 3.3. To apply Lemma A.5 below, suppose that ∂Πi(qi, Q −i)/∂qi > 0, where qi is taken from the interior
of Ti and such that Q ∈ I P . Then, qi P ′(Q ) + P (Q ) > 0 and by Lemma A.6, inequality (14) holds. Using β � 1 and qi/Q �
1 yields qi P ′′(Q ) + P ′(Q )(2 − α − β) � 0. Adding P ′(Q )(α + β) − C ′′

i (qi) � 0, one obtains ∂2Πi(qi, Q −i)/∂q2
i � 0. Thus,

Πi(., Q −i) is quasiconcave over the subset of the interior of Ti where Q ∈ I P . Since C ′
i � 0, and by continuity, Πi(., Q −i) is

quasiconcave over the whole of Ti . Existence now follows from Assumptions 3.1 and 3.2. �
The proof of the following lemma is adapted from Diewert et al. (1981).

Lemma A.5. Assume that f = f (x) is twice continuously differentiable on an open interval X ⊆ R. Then f is quasiconcave over X if
f ′(x) > 0 implies f ′′(x) � 0.

Proof. Suppose f is not quasiconcave. Then, there are x1 < x∗ < x2 such that f (x∗) < min{ f (x1), f (x2)}. Take some x̃1 ∈
(x1, x∗) with f ′(x̃1) < 0, and some x̃2 ∈ (x∗, x2) with f ′(x̃2) > 0. Denote by x0 the largest element in the interval (x̃1, x̃2) such
that f ′(x0) = 0. By Taylor’s theorem, there is some x∗ ∈ (x0, x̃2) with f (x̃2) = f (x0)+ f ′(x0)(x̃2 − x0)+ (1/2) f ′′(x∗)(x̃2 − x0)

2.
Using f ′(x0) = 0 and f (x̃2) > f (x0) shows f ′′(x∗) > 0. Yet x0 < x∗ < x̃2 implies f ′(x∗) > 0. �

The following lemma is needed for Theorems 3.3, 3.4, and 4.2.

Lemma A.6. Let Q ∈ I P , and assume that ΔP
α,β(Q ) � 0, where α � 1 and β ∈ R. Then, qi P ′(Q ) + P (Q ) � 0 implies

qi P ′′(Q ) + P ′(Q ) �
(
α − qi

Q
(1 − β)

)
P ′(Q ). (14)

Proof. To obtain (14), one multiplies qi P ′(Q ) + P (Q ) � 0 through with (1 − α)P ′(Q ) � 0, and subsequently adds
(qi/Q )ΔP

α,β(Q ) � 0. �
Proof of Theorem 3.4. Assume first ΔP

α,β < 0 with α+β < 2. Let qi ∈ Ti such that Q ∈ I P , and suppose ∂Πi(qi, Q −i)/∂qi = 0.

Then, for qi > 0, the proof of Theorem 3.3 shows that ∂2Πi(qi, Q −i)/∂q2
i < 0. For qi = 0, the second-order condition is

2P ′(Q −i)− C ′′
i (0) < 0, which follows from (α +β)P ′ − C ′′

i � 0 and α +β < 2 because ΔP
α,β < 0 implies P ′ < 0 over I P . Thus,

Πi(., Q −i) is strongly pseudoconcave over the range where Q ∈ I P , and by continuity, strictly quasiconcave over the range
where P (Q ) > 0. The case where (α + β)P ′ − C ′′

i < 0 is analogous. �
Proof of Theorem 4.2. Existence follows from Theorem 3.3. As for uniqueness, note first that P (Q ) > 0 in any equilib-
rium, by Assumption 4.1. Assume next that qi > 0 for some firm i in an equilibrium (q1, . . . ,qN ). Then, by strict qua-
siconcavity, Πi(qi,0) � Πi(qi, Q −i) > Πi(0, Q −i) = Πi(0,0), so that Q = 0 is not a second equilibrium. Consider, finally,
χ(Q ) = ∑N

i=1 χi(Q ), where χi(Q ) is defined in Lemma A.7 below. Since χ(Q ) = Q holds in any equilibrium, it suffices to
show that the right-derivative of χ , denoted by D+χ , satisfies D+χ < 1. Write B(Q ) = {i: D+χi(Q ) �= 0}. Then,

D+χ(Q ) =
N∑

i=1

D+χi(Q ) =
∑

i∈B(Q )

qi P ′′(Q ) + P ′(Q )

C ′′
i (qi) − P ′(Q )

. (15)

Note that qi P ′(Q ) + P (Q ) � 0 for any i = 1, . . . , N . Indeed, if qi P ′(Q ) + P (Q ) < 0, then χi(Q ) = 0, which would imply
P (Q ) < 0. Hence, by Lemma A.6,

D+χ(Q ) �
∑

i∈B(Q )

(α − qi
Q (1 − β))P ′(Q )

C ′′
i (qi) − P ′(Q )

�
∑

i∈B̃(Q )

(α − qi
Q (1 − β))P ′(Q )

C ′′
i (qi) − P ′(Q )

, (16)

where B̃(Q ) = {i ∈ B(Q ): α − qi
Q (1 − β) < 0}. If now either P ′(Q ) = 0 or B̃(Q ) = ∅, then (16) implies D+χ(Q ) � 0.

Otherwise, i.e., if P ′(Q ) < 0 and |̃B(Q )| � 1, then necessarily α + β < 1, and hence,

D+χ(Q ) <
∑

i∈B̃(Q )

−α + qi
Q (1 − β)

1 − α − β
� 1 − α |̃B(Q )| − β

1 − α − β
� 1. (17)

Moreover, if (7) holds merely as a weak inequality yet ΔP
α,β < 0, then inequality (14) in Lemma A.6 becomes strict for any

i ∈ B̃(Q ). Thus, D+χ < 1 in any case, and there is precisely one equilibrium. �
The following lemma is needed for the argument above. See also Fig. 2.
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Fig. 2. The slope of the best-response function strictly exceeds −1.

Lemma A.7. Impose the assumptions of Theorem 4.2. Then, for any Q ∈ I P , the equation qi = ri(Q − qi) has a unique solution
qi ≡ χi(Q ) ∈ [0; Q ] if Q � ri(0), and no solution if Q < ri(0). Moreover,

D+χi(Q ) = qi P ′′(Q ) + P ′(Q )

C ′′
i (qi) − P ′(Q )

IMi (Q ), (18)

where IMi is the indicator function of a measurable set Mi ⊆ I P .

Proof. Let Π i(qi, Q −i) = qi P (qi + Q −i) − Γi(qi), where Γi is twice continuously differentiable over R, and Γi(qi) = Ci(qi)

over Ti . By Theorem 3.4, for any Q −i ∈ I P , the function Π i(., Q −i) is strongly pseudoconcave over the subinterval of Ti
where P (qi + Q −i) > 0. Hence, for any Q 0

−i ∈ I P , there is some ε > 0, and a neighborhood U of Q 0
−i such that Π i(., Q −i) is

strongly pseudoconcave over the corresponding subinterval of T ε
i = [−ε,∞) if ki = ∞, and of T ε

i = [−ε,ki +ε] if ki < ∞, for
any Q −i ∈ U . By making ε > 0 sufficiently small, ri(Q −i) = arg maxqi∈T ε

i
Π i(qi, Q −i) is well-defined on any given compact

subset of I P . Since, locally, either ri(Q −i) = max{0; ri(Q −i)} or ri(Q −i) = min{ri(Q −i);ki},

D+ri(Q −i) = − P ′(Q ) + qi P ′′(Q )

2P ′(Q ) + qi P ′′(Q ) − C ′′
i (qi)

IM0
i
(Q −i) (19)

for some measurable set M0
i ⊆ I P . Now P ′ − C ′′

i < 0 implies D+ri > −1. Thus, ψi(Q −i) ≡ Q −i + ri(Q −i) is continuous and
strictly increasing, with ψi(0) = ri(0) and ψi(Q ) � Q , proving the first assertion. As D+ψi = 1 + D+ri > 0, the directional
version of the inverse function theorem implies D+(ψ−1

i ) = 1/(1 + D+ri). Hence, D+χi(Q ) = D+ri(Q )/(1 + D+ri(Q )),
and (18) holds with Mi = ψi(M0

i ). �
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